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Behavioral effects of the same dose of the same drug can vary in degree and direction between and within
individuals. The present study examines behavioral base rates, feeding status, and dispositional differences as
sources of inter- and intra-individual heterogeneity in drug response. Modulation of the effects of
methylphenidate (MPD) on wheel running and acoustic startle by food deprivation was examined in three
experiments. Freely fed or food deprived Harlan Sprague–Dawley rats (running study) or rats selectively bred
for low (LoS) and high (HiS) saccharin intake (running and startle studies) were given MPD (10 mg/kg) or
saline before testing. Overall drug effects and predictors of drug response were assessed. MPD increased
running and startle amplitude and disrupted prepulse inhibition; systematic variation among rats of these
effects and their modulation by food deprivation was observed. Deprivation-induced running predicted
MPD's effect in Harlan SD and LoS rats. Observation of this relationship among commercial rats suggests that
acute deprivation sensitivity has utility as a noninvasive marker for drug responses. Its observation in rats
selected on a taste phenotype with known correlates points to fruitful avenues of research on stimulant drugs'
mechanisms, especially in dopaminergic pathways, and may be relevant to their clinical usage.
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1. Introduction

Methylphenidate (MPD) is a psychostimulant that increases catechol-
aminergic transmission throughmultiple mechanisms including reduced
reuptake and enhanced presynaptic sequestration and release (Volz et al.,
2008). Consistent with activity in distributed dopamine and norepineph-
rine pathways, MPD affects attention, emotion, motor activity, sleep, and
eating, with effects in humans ranging from therapeutic to adverse, even
at the same dose (Challman and Lipsky, 2000; Sonuga-Barke et al., 2009;
Stein and McGough, 2008). This diversity of effects, coupled with
widespread use of MPD by adolescents and adults (Johnston et al., 2007,
2009), makes the study of individual differences in MPD responses an
interesting and important endeavor. The heterogeneity that is a bane to
pharmacotherapy presents tractable questions for basic behavioral
research with laboratory animals.

The present study combined experimental and correlational
methods to examine sources of inter- and intra-individual variance
in the behavioral effects of MPD in rats. Two modulators of MPD
effects were of interest. The first was reduced food intake. Food
deprivation enhances the rewarding and locomotor-activating effects
of stimulant drugs, due in part to increased striatal and mesolimbic
dopamine activity (Bell et al., 1997; Carr, 2007; Merrer and Stephens,
2006; Simpson, 1974). Food deprivation also directly increases wheel
running (Epling and Pierce, 1996). A key question here was whether
acute food deprivation is sufficient to produce these indirect and
direct effects and, if so, whether they co-vary.

The second modulator of interest was risk reactivity. This construct
was not manipulated experimentally. Rather, strong a priori inferences
about it were made by comparing selectively bred Occidental Low-
(LoS) and High- (HiS) Saccharin-Consuming rats. LoS and HiS rats differ
on the selection phenotype of saccharin intake and on self-administra-
tion of ethanol and cocaine (LoS b HiS; Carroll et al., 2008; Dess et al.,
1998, 2005). LoS rats cope lesswell with glucoprivation than doHiS rats
(VanderWeele et al., 2002), whichwe have linked conceptually to other
behaviors via the construct of risk reactivity (Dess et al., 2007). Risk
reactivitymanifests as species-typical responses to threat such as open-
field defecation, nocturnality, and acoustic startle (LoS N HiS; Dess and
Minor, 1996; Dess et al., 2000, 2007).

This pattern of correlates of the saccharin phenotype suggests that
food deprivation will enhance stimulant effects more among LoS rats.
Several studies have documented differences in stimulant self-adminis-
tration in LoS andHiS rats (Carroll et al., 2008) but only one has examined
adirect behavioral effect of acute stimulant treatment: Carroll et al. (2007)
observed equivalent cocaine-elicited locomotor activity in male LoS and
HiS rats. However, the rats were freely fed. The present study therefore
provides the first test of the hypothesis that stimulant effects will be
differentially modulated by food deprivation in the two lines.

MPD activates pathways involved in reward, attention, anxiety,
locomotion, and stereotypies (Askenasy et al., 2007; Zhu et al., 2010),
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Table 1
Method summary for Experiments 1–3.

Experiments 1 and 2: Wheel running

Conditions

Saline MPD

Ad lib. Saline/Ad lib. MPD/Ad lib.
Deprived Saline/Deprived MPD/Deprived

Rats Design

Experiment 1: Harlan Sprague–Dawley Drug × Feeding (repeated measures)
Experiment 2: LoS, HiS Drug × Feeding (repeated measures) ×

Line (between groups)

Experiment 3: Acoustic startle

Conditions

Saline MPD

Ad lib. Saline/Ad lib. MPD/Ad lib.
Deprived Saline/Deprived MPD/Deprived

Rats Design

LoS, HiS Drug (repeated measure) ×
Line × Feeding (between groups)
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and many behavioral measures are sensitive to more than one
process. Mindful of the limitations of any single measure, we selected
two measures that are sensitive to stimulant treatment and
distinguish LoS from HiS rats. The first was wheel running. Running
in a familiar wheel is a bidirectionally sensitive measure that
minimizes the conflict between novelty-induced exploration and
anxiety that complicates interpretation of behavior in arenas and
mazes (Bevins and Peterson, 2004; Cain et al., 2005; Li et al., 2010;
Marriott, 1968; Stead et al., 2006). In a prior study, a small line
difference in wheel running (LoS NHiS) was dramatically increased by
food deprivation, a difference replicable across three deprivation/
recovery episodes (Dess et al., 2000). That study involved females in
23-h sessions, so the present study with males in 2-h sessions
provides information as to the robustness of that difference. More
importantly, the present study bears on the question of whether
individual differences that predispose more running, during either
free feeding or deprivation, might mediate drug responses. Evidence
from laboratory rodents is mixed: Among commercially bred rats,
stimulants increase running more amongmore active rats (Ferreira et
al., 2006; Irwin et al., 1958); in contrast, stimulants reduce running in
mice selectively bred for high wheel running while increasing it in
controls (Rhodes and Garland, 2003). Whether species, selection on a
relevant phenotype, or other factors account for the “paradoxical”
effect unique to the latter study is unclear. Also, animals in those
studies were freely fed, leaving open the question of individual
differences in the impact of deprivation are related to drug responses.

The second measure was acoustic startle. Startle amplitude is a
reliable correlate of the saccharin phenotype (LoS N HiS; Dess et al.,
2000; Gonzales et al., 2008). Unlike running, startle is a defensive
reflex, not locomotor behavior, and is not reinforcing. It is, however,
sensitive to attention and emotional state (Cook et al., 1991; Davis
et al., 2008; Swerdlow et al., 2007), and individual differences in
startle and inhibition of startle by a prepulse stimulus have been
linked to dopamine function (Feifel, 1999; Swerdlow et al., 2001).
Comparing results for startle to results for running provides clues as to
whether the mechanisms of line differences in MPD effects are shared
by running and startle pathways.

Three experiments examined food deprivation and disposition as
sources of variation in impacts of a single dose of MPD (10 mg/kg) on
wheel running and startle. This MPD dose increases locomotor
behavior robustly across measures, including wheel running (Aske-
nasy et al., 2007; Marriott, 1968; Yang et al., 2010). It produces
sensitization and tolerance less reliably than do, respectively, lower
and higher doses (Askenasy et al., 2007) and is intermediate to the
dose used in the two studies of MPD effects on startle in rats, which
yielded typical stimulant effects (i.e. increased startle, impaired
prepulse inhibition; Conti et al., 2006; Drolet et al., 2002). In
Experiment 1, MPD's effect on runningwasmeasured in commercially
bred rats (Harlan Sprague–Dawley) during free feeding and depriva-
tion. A relatively stable baseline can be established for running, so
each rat was tested with and without MPD in both feeding conditions.
This design allowed examination of covariation at the individual level
of MPD effects for evidence of rate dependency (Harris et al., 1978;
Teicher et al., 2003). Experiment 2 replicated Experiment 1 with LoS
and HiS rats. In Experiment 3, startle replaced running as the
dependent measure. Startle habituates. Therefore, startle testing
was limited to two sessions and line differences, but not individual
differences among commercial rats or within lines, were examined.

2. Methods

2.1. Experiments 1 and 2

2.1.1. Rats
Male rats 65–90 days old were used. In Experiment 1, 13 Harlan

Sprague–Dawley rats (Harlan Laboratories, San Diego, Inc) averaging
283±5 g (mean± SEM)were used. In Experiment 2, 20 HiS rats from
eleven litters and 20 LoS rats from nine litters in Generations 32–33
began the study. One HiS rat was eliminated due to motor
incoordination, and two LoS rats were eliminated due to procedural
error, yielding final group sizes of 19 and 18. Bodyweight (412±9 g)
did not differ between lines. Rats were housed individually on a
12:12 h light:dark schedule (lights on at 0700). Purina 5001 Rodent
Chow was available in home cages except as described below. Water
was freely available in home cages.

2.1.2. Materials
Computerized runningwheels (Model86041, Lafayette Instruments,

IN) were used. Methylphenidate (Sigma Aldrich, Inc; 10 mg/kg) or
saline was injected i.p. at 1 ml/kg.

2.1.3. Procedure
Running sessions occurred between 0815 and 1245. Rats were

transported in home cages from the vivarium to wheels in a separate
room, then returned to the vivarium 2 h later. After daily 2-h training
sessions (five in Exp. 1, five or six in Exp. 2), a series of four treatments
differing with respect to drug and feeding status began (see Table 1).
Two of the four running tests were preceded by a deprivation period
(46 h with only 1 h of chow access at 23 h, after a 2-h running
session). The running test occurred at the end of the deprivation
period, and rats were returned to ad lib. feeding immediately
afterwards. Rats were weighed and injected with MPD or saline
15 min before each test session.

Each rat was tested once in all four experimental conditions in one
of four treatment orders. Orders were selected such that the two
deprivation episodes (Saline/Deprived, MPD/Deprived) were either
the first and third treatments or the second and fourth treatments,
and the order of the two MPD conditions (MPD/Ad Lib., MPD/
Deprived) was balanced. In the resulting Latin square, each treatment
occurred once in each ordinal position, and the two MPD treatments
occurred equally often with and without a prior deprivation episode
(Saline/Deprived). Rats had 46 h of free feeding between deprivation
and the next condition, 46 h between successive drug conditions, and
one recovery running session between successive conditions. A single
re-exposure to MPD at this dose using these temporal parameters
should not cause appreciable sensitization or tolerance (Askenasy
et al., 2007; Carroll et al., 2007; Wooters et al., 2006) and, in this
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design, any such effects were not confounded with deprivation. In
Experiment 2, lines and littermates (1–3 per litter) were balanced
across treatment orders.

All procedures were approved by the Occidental College Institu-
tional Animal Care and Use Committee, in accordance with the
institution's federal Animal Welfare Assurance.

2.2. Experiment 3

2.2.1. Rats
Male HiS and LoS rats 65–90 days old from Generations 32–33

weremaintained as described above. Twenty-four HiS rats from seven
litters and 23 LoS rats from eight litters averaging 462±9 g were
used.

2.2.2. Materials
Acoustic startle testing was conducted in a startle chamber with a

piezoelectric sensor and digital display of platform force in arbitrary
units (SD Startle Pilot, San Diego Instruments, San Diego CA). It was
housed in a sound-attenuating chamber with 60-dB ambient masking
noise. The startle stimulus was a 40-ms, 95-dB white noise burst.
The prepulse stimulus was a 40-ms, 65-dB white noise burst that
preceded the startle stimulus by 100 ms. Methylphenidate (10 mg/kg)
or saline was injected i.p. at 1 ml/kg. This dose disrupted prepulse
inhibition in a preliminary study with ad lib. fed adult male LoS
and HiS rats [F(1,55)=7.53].

2.2.3. Procedure
Rats were assigned to a free-feeding or deprivation condition,

with littermates balanced between conditions (1–2 littermates per
condition). Each rat was tested once with MPD and once with
saline. The saline and MPD tests were seven days apart, with drug
treatment order balanced. The deprivation regime was the same as in
Experiments 1 and 2.

Rats were briefly handled on the five days before startle testing
began. Testing occurred between 1300 and 1500. Twenty minutes
after injection of MPD or saline, a rat was placed in the startle chamber
for a 3-min adaptation period, after which 30 trials (15 regular, 15
prepulse) occurred at 10 s intervals. Regular and prepulse trials were
run in one of two quasi-random mirror-image orders. The chamber
was swabbed between rats with 5% ammonium hydroxide.

3. Data analysis

3.1. Wheel running (Experiments 1 and 2)

Wheel running data (number of revolutions) were subjected to
two kinds of analysis. Multivariate analyses of variance (MANOVA)
were used to evaluate deprivation, drug, and, in Experiment 2, line
effects. Whole-session data were examined in a MANOVA with
feeding status, drug treatment, session time (successive 30-min
intervals) and, in Experiment 2, line as variables (see Table 1). The
highest order significant interactions were interpreted with pairwise
contrasts, using Bonferroni-corrected p values.

Next, running was reanalyzed in a narrower time frame to permit
comparison of MPD's effect on running to its effects on startle. In the
startle study (Exp. 3), the injection–test interval was 5 min longer
than in Experiments 1 and 2 (20 min, vs 15 min); startle trials began
after a 3-min adaptation period and lasted 5 min. The comparable
post-injection period in the running sessions, then, wasMinutes 9–13.
A MANOVA analyzed running during those minutes.

Pearson's rwas used to evaluate relationships involving individual
differences in drug response. Because MPD effects were significant in
the first 30-min interval, those data were used. First, two correlations
assessed the relationship between deprivation-induced hyperactivity
and drug response in (a) the ad lib. condition and (b) the deprivation
condition. Deprivation-induced hyperactivity (DIH) was defined as the
difference between running after saline injection during deprivation
vs free feeding. Drug response was defined as the difference between
running in the MPD vs the saline condition; this value was calculated
for each of the two feeding conditions. Then, Steiger's (1980) T2 for
dependent rs was used to compare the DIH/drug response correlation
during free feeding to the DIH/drug response correlation during
deprivation.

Comparing the relationship of DIH to drug response in the two
feeding conditions via two correlations retains information about
each condition, but ambiguity remains as to whether deprivation
modulates drug response at the level of individuals. Intra-individual
modulation of drug response by deprivation was indexed with a
composite score for each rat: MPD response during free feeding was
subtracted fromMPD response during deprivation. This score is near 0
for rats who responded similarly to MPD in both conditions, positive
when MPD increased running more (or reduced it less) during
deprivation, and negative when MPD increased running less (or
reduced it more) during deprivation. The correlation between this
score and DIH was evaluated. In Experiment 2, Fisher's z for inde-
pendent rs compared LoS to HiS rats, as a direct test of whether
modulation of MPD's effect by deprivation differed between lines.

3.2. Acoustic startle (Experiment 3)

Challenges in quantifying prepulse inhibition have been discussed
elsewhere (e.g. Sandner and Canal, 2007; Swerdlow et al., 2000a).
Startle on prepulse trials usually is transformed to a measure of
suppression relative to regular (non-prepulse) startle trials. Such
transformations can vary artifactually as a function of regular startle
amplitude. Absent consensus about how to manage this issue, we
examined startle data in four stages. In Stage 1, startle values (15 of
each trial type, averaged into five 3-trial blocks) were subjected to an
omnibus MANOVA with line, drug, trial type, trial block, and feeding
status as variables. Higher-order interactions involving trial type
indicated that variables differentially affected startle on regular vs
prepulse trials. Thus, in Stage 2, regular startle was examined using
MANOVA, separately from prepulse inhibition.

The last two stages examined prepulse inhibition. In Stage 3, a
data-driven approach was used to gauge the likelihood that effects
were artifacts of regular startle amplitude. Prepulse trial data were
transformed to percentage difference scores [PPI = (prepulse
−regular)/regular, × 100, in each trial block]. These were used as
the dependent variable in hierarchical regression in each drug
condition in each trial block. To examine covariation between startle
amplitude and PPI scores, regular startle was entered first. To test
homogeneity of regression across groups, the group × regular startle
interaction was entered after the group main effect. To test homo-
geneity of regression between drug conditions, βs for saline vs MPD
were compared using T2.

Finally, in Stage 4, PPI scores were subjected to a MANCOVA with
line, drug, trial block, and, feeding status as variables. Regular startle
amplitude in each trial blockwas used as a varying covariate. Contrasts
on adjusted means were tested with Bonferroni-corrected p values.

For all analyses, test statistics significant at α=.05 are reported.

4. Results

4.1. Experiment 1: running in Harlan Sprague–Dawley rats

Number of revolutions per 30-min interval is shown in Fig. 1. Rats
ran more when given MPD, when food deprived, and early in the
session. The drug effect was largest early in the session. A drug ×
feeding status × session time MANOVA yielded main effects of drug,
F(1,12)=10.10, feeding status, F(1,12)=40.51, and session interval,
F(3,10)=18.89. The drug × session interval interaction also was
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significant, F(3,10)=8.41; contrasts showed that the MPD effect was
significant only in the first 30 min. All other effects were additive.
MPD and deprivation effects in Minutes 9–13 (not shown) were
similar to results for the session overall. Rats ran more when given
MPD, F(1,12)=22.11, and when deprived, F(1,12)=15.94, and
running declined across minutes, F(4,9)=3.70. MPD's effect was
stable across this interval.

Individual responses to MPD in the first 30-min interval varied
from dramatic increases to reductions in running (range: +301 to
−121 revolutions, vs saline). Correlations involving these values are
shown in Table 2. During free feeding, MPD increased running more
among rats who showed greater DIH. During deprivation, MPD
increased running more among rats who showed less DIH and
reduced running among rats with the highest DIH. Both correlations
were significant, as was the difference between them, T2(10)=11.57.
Examination of composite scores showed that DIH predicted the
modulation of drug response by deprivation: MPD's facilitation of
running was enhanced by deprivation among lower-DIH rats and was
reduced or reversed by deprivation among higher-DIH rats.

Post hoc analyses assessed three third-variable accounts of these
results. Datawere taken from thefirst 30 min, duringwhichMPDeffects
were significant. First, the role of asymmetrical order effects involving
prior deprivation was assessed by repeating the MANOVA with
deprivation sequence (Saline/Deprivation before vs after drug condi-
tions) as a variable. No effects involving deprivation sequence were
Table 2
Results from analyses of the relationships between running rates in different conditions in
effects were significant.

Pearson's r Partial
runnin

Experiment 1 df=11 DIH df=10
MPD/Ad Lib. 0.76c MPD/A
MPD/Deprived −0.63ad MPD/D
Composite score −0.87c Compo

Experiment 2
LoS df=16 df=15

MPD/Ad Lib. −0.21 MPD/A
MPD/Deprived −0.44 MPD/D
Composite score −0.52ae Compo

HiS df=17 df=16
MPD/Ad Lib. −0.16 MPD/A
MPD/Deprived 0.20 MPD/D
Composite score 0.30 Compo

a vs 0, pb .05.
b vs 0, pb .01.
c vs 0, pb .001.
d vs Ad Lib., pb .05.
e vs HiS, pb .05.
f vs HiS, pb .001.
significant. Next, whether DIH/MPD response correlations could be
explained in terms of baseline running was examined. Running on the
last training day served as a measure of baseline running. It varied
substantially (range: 44–237 revolutions). Correlations between DIH
and indexes of drug response (MPD response during free feeding and
deprivation, and the composite score) were reexamined in hierarchical
regressions,with baseline running at thefirst step andDIH at the second
step. After controlling for baseline running, all three relationships
remained significant, respectively, F(1,9)=17.90, 11.12, and 23.03 (see
Table 2 for partial correlation coefficients). In addition, baseline running
was uncorrelated with drug response during free feeding.

Weight loss also was considered. Rats lost about 11% of their
bodyweight during deprivation, with little variation between indivi-
duals or deprivation episodes and no extreme weight loss. Due to
differing treatment orders, an appropriate pre-deprivation body-
weight was available for both episodes for six rats, whose reduced
bodyweight in the two episodes averaged, respectively, 88.2±0.5%
and 89.0±1.3% (lowest 85.1%). Weight loss for all 13 rats in the
second episode was similar (89.5±0.6%, lowest 85.1%). After
controlling for weight loss, DIH still predicted all three MPD response
indexes, respectively, F(1,10)=16.13, 5.46, and 32.01.

To summarize, MPD and deprivation effects are additive when
means are compared (Fig. 1), but analysis of within-group variation
reveals rate dependency of MPD effects, including “paradoxical”
reduction in running by rats with high DIH (Table 2). Neither baseline
running nor weight loss accounts for covariation of DIH and MPD
responses. Rather, high DIH appears to be a marker for sensitivity to
feeding status of pathways affected by MPD.

4.2. Experiment 2: running in LoS and HiS rats

Number of revolutionsper30-min interval is shown in Fig. 2. LoS and
HiS rats ran more when food deprived and early in the session, and
deprivation enhanced MPD's effect. A line × drug × feeding status ×
interval MANOVA yielded main effects of feeding status, F(1,35)=
22.18, and interval, F(3,33)=25.89. The drug × feeding status × session
time interaction also was significant, F(3,33)=3.45; MPD-vs-saline
contrasts showed that the drug effect was significant only in the first
30 min interval and onlywhen the ratswere food deprived. On this time
scale, no effects involving line were significant.

Running in Minutes 9–13 are shown in Fig. 3. Deprivation
increased running more in LoS than in HiS rats, as observed in
females in 23-h sessions (Dess et al., 2000). Importantly for present
Experiments 1 and 2. All data are from the first 30 min of sessions, during which MPD

correlation (Rxy.z) baseline
g controlled

Partial correlation (Rxy.z) weight
loss controlled

DIH DIH
d Lib. 0.80b MPD/Ad Lib. 0.79b

eprived −0.64bd MPD/Deprived −0.59ad

site score −0.90c Composite score −0.87c

d Lib. −0.26
eprived −0.58ae

site score −0.71bf

d Lib. −0.29
eprived 0.15
site score 0.35
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Fig. 2. Experiment 2: Wheel revolutions in successive 30-min intervals by LoS (upper
panel) and HiS (lower panel) rats while food deprived or fed ad lib. after treatment with
MPD or saline.
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purposes, deprivation made MPD's effect more robust in LoS and
less robust in HiS rats. AMANOVA yieldedmain effects of feeding status,
F(1,35)=11.50, and drug, F(1,35)=9.39, and two interactions: line ×
feeding status, F(1,35)=4.59, and line× feeding status×drug×minute,
F(4,32)=3.00. Contrasts showed that in LoS rats, MPD's effect was not
significant in anyminute during free feeding; during deprivation, it was
significant inMinute 13 (andnearly so inMinute11, p=.06). InHiS rats,
MPD's effect was significant in Minutes 9, 10, 11, and 13 during free
feeding and only in Minutes 9 and 13 (and nearly so in Minute 12,
p=.06) during deprivation. Though subtle, the line difference in this
interval is useful for comparison to results in the same post-injection
interval for startle (Experiment 3).

MPD's effect on running in the first 30 min ranged from+315 to−
113 among LoS and from +163 to −19 among HiS rats (revolutions
after MPD vs saline). Correlations involving these values are shown in
Table 2. Both lines trended toward an inverse relationship during free
feeding, a trend strengthened somewhat by deprivation in LoS rats,
but none of those correlations was significant. Analysis of the
composite drug response score, however, reveals that deprivation
modulated MPD response in LoS rats but not in HiS rats; the two
correlations differed significantly, Fisher's z=2.48. Repetition of
correlational analyses for Minutes 9–13 showed the same pattern
except that the inverse relationship between DIH and modulation of
drug response by deprivation held in both LoS and HiS rats.

Post hoc analyses of data from the first 30 min show that, as in
Experiment 1, MPD results cannot be explained in terms of deprivation
sequence, baseline running, orweight loss. Repeating theMANOVAwith
deprivation sequence as a variable yielded no effects involving
deprivation sequence. Average running on the last training day was
less than in Harlan SD rats, as is typical for larger rats (Doerries, 1996).
LoS rats ran slightly more than HiS rats (56±7 vs 41±6 revolutions,
respectively). The line difference was not significant and the ranges
were similar (range: 9–123 revolutions for LoS, 10–101 revolutions for
HiS). Controlling for baseline running did not affect the pattern of
results; in fact, the relationship between DIH andMPD response during
deprivation strengthened among LoS rats such that the partial
correlation coefficient differed significantly from both 0 [F(1,15)
=7.57] and the HiS rats' correlation, Fisher's z=2.19. Baseline running
was not correlatedwith drug response during free feeding in either line.

As in Experiment 1, rats lost about 11% of their bodyweight during
deprivation, with little variability and no extreme weight loss. Weight
loss was estimated from the nine rats in each line for which weight loss
could be calculated for both deprivation episodes (LoS, 88.8±0.5% and
89.8±0.6%, lowest 86.0%; HiS, 88.9±0.7% and 89.2±0.7%, lowest
84.0%). This sample is too small for inferential tests; descriptively,
though, the utility of DIH as a predictor of the composite score in this
subset of rats changed little after controlling for weight loss (Rxy.z=
−0.50 vs −0.48 for LoS, 0.29 vs 0.44 for HiS).

In summary, as in Harlan SD rats, food deprivation increased
running in LoS and HiS rats, and unlike Harlan SD rats, MPD increased
running only during deprivation. Within the post-injection interval
matching startle testing (below), deprivation heightenedMPD's effect
in LoS rats and attenuated it in HiS rats. DIH robustly predicted
modulation of drug response by deprivation among LoS rats, as it did
among Harlan SD – but not HiS – rats.

4.3. Experiment 3: acoustic startle in LoS and HiS rats

In a preliminary omnibus MANOVA, no interactions of MPD treat-
ment order with line, feeding status, or trial type were significant.
Therefore, the MANOVA was repeated without order as a variable. It
yielded main effects of line, F(1,43)=21.22, drug, F(1,43)=57.97, trial
type, F(1,43)=112.09, and trial block, F(4,40)=14.02, and drug ×
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feeding status, line× drug × feeding status, drug × trial type, and drug ×
trial type × feeding status interactions, Fs(1,43)=4.30, 8.85, 4.61, and
4.00, respectively.

Due to interactions involving trial type, regular startle was analyzed
separately fromPPI. Regular startle is shown in Fig. 4. As expected, LoS rats
startled more than HiS rats. MPD's effect was minimal among well fed
rats. Deprivation enhancedMPD's elevation of startle, more so in LoS rats.
A line × drug × feeding status × trial blockMANOVA yieldedmain effects
of line, F(1,43)=21.50, drug, F(1,43)=22.45, and block, F(4,40)=7.16,
and three interactions: drug× feeding status, F(1,43)=7.19, line×drug×
feeding status, F(1,43)=4.30, and line × drug × feeding status × block,
F(4,40)=3.62. MPD vs saline contrasts for each group/condition in
each trial block showed that for LoS rats, MPD elevated startle
marginally in Block 1 (p=.06) among freely fed rats but increased
startle in Blocks 2–5 among deprived rats. For HiS rats, MPD increased
startle in Block 5 among ad lib. fed rats and in Blocks 1 and 5 among
deprived rats.

Hierarchical regressions of regular startle on PPI showed that in
every trial block in both drug conditions, β was negative (higher
startle predicted stronger inhibition). Homogeneity of regression held
in each trial block except for modest departure in Block 4 [among
groups in the saline condition, F(3,39)=3.28, and saline vs MPD,
T2=2.09]. Thus, use of regular startle as a varying covariate in analysis
of PPI was reasonable (Hamilton, 1977).

A line × drug × feeding status × trial block MANCOVA on PPI
yielded a main effect of drug, F(1,42)=34.46, and block, F(4,171)=
6.09, and a line × feeding status × drug interaction, F(1,42)=5.65.
The trial block effect reflects less PPI in Block 1 than in other blocks.
Because block did not interact with any other variable, marginal
means (adjusted for the covariate) are shown in Fig. 5. A nonordinal
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Fig. 4. Experiment 3: Acoustic startle magnitude on regular startle trials among LoS
(upper panel) andHiS (upper panel) ratswhile food deprived or fed ad lib. after treatment
with MPD or saline. Startle values for each trial type are averaged over 3-trial blocks.
interaction is apparent: Contrasts confirmed that deprivation in-
creased disruption of PPI by MPD among LoS rats and blocked
disruption among HiS rats.

5. Discussion

Well-known stimulant effects including increased running and
startle amplitude and disrupted prepulse inhibition were observed,
validating the protocols and dose selection. These findings add to the
two other studies of MPD effects on startle modulation in rats (Conti
et al., 2006; Drolet et al., 2002), an empirical database that remains
sparse compared to those for amphetamine and apomorphine. Three
kinds of variation in stimulant effects reported previously – enhance-
ment by food deprivation (Carr, 2007), strain differences (Bell et al.,
2003; Drolet et al., 2002; Swerdlowet al., 2007, 2008; Varty andHiggins,
1994), and rate dependency (Belke andDunbar, 2001; Belke et al., 2005;
Harris et al., 1978) – were observed. The present study extends the
literature by linking these variations in ways that are practically useful
and point to new research avenues.

5.1. Strain differences in MPD's effect on wheel running

Group-aggregated analyses show that MPD increases running in
Harlan SD, LoS, and HiS rats. MPD is equally effective regardless of
feeding status in Harlan SD rats. In contrast, MPD increases running
among LoS andHiS rats onlywhen food deprived. The difference could
be due to intrinsic strain or rearing differences. Alternatively, basal
metabolic status could be key (Carr, 2007): Freely fed LoS and HiS rats
may be too large/fatty to respond toMPD, and deprivation functionally
increases MPD's potency by generating a metabolic state more similar
to smaller, leaner Harlan SD rats. Either way, a practical implication is
that the expression of (sub)strain differences in MPD's effects on
running will vary depending on animals' nutritional status (Cabib
et al., 2000; Kanarek et al., 2005).

With respect to intragroup heterogeneity, strain differences again
depend on feeding status. During free feeding, Harlan SD rats were
distinguished from both LoS and HiS rats by a strong positive
correlation between DIH and MPD response. This difference, like the
freely fed Harlan SD rats' greater group-wise MPD response, could be
due to the Harlan SD rats' being leaner and/or more active. Relation-
ships during deprivation, however, are less easily explained. Rats in all
three (sub)strains lost about 11% of their bodyweight, so relative
weight reduction cannot explain differences. Relative to Harlan SD
rats, both LoS and HiS lines were 45% heavier and ran half as much at
the end of training. Yet, Harlan SD and LoS rats, despite their size/
weight and activity differences, had in common that MPD's facilitation
of running during deprivation was greater in individuals for whom
deprivation alone elicited little hyperactivity. That relationship was
not observed among HiS rats, though they were comparable to LoS
rats in bodyweight and baseline running. These deprivation-contingent
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relationships also cannot be easily explained in terms of regression to
the mean or ceiling/floor effects. For instance, saline-treated deprived
LoS rats ran about as much as did saline-treated freely feeding Harlan
SD, and yet MPD responses in those conditions bore opposite relation-
ships to DIH in the two strains.

What, then, might account for the inverse relationship of DIH to
MPD responses in deprived Harlan SD and LoS rats? Wheel running
reflects multiple processes – reward, arousal, locomotor activation –

that are sensitive to stimulant drugs, food deprivation, and stimulant
enhancement by deprivation (Berridge, 2006; Carr, 2007). Moreover,
running is not just an effect— it also is a cause. For example, running is
rewarding; as such, it can reinforce itself or other behaviors and
substitute for drug self-administration (Belke, 1996; Cosgrove et al.,
2002). Consequently, individual differences in MPD responses could
be rooted in anything from congenital events to interplay between
feeding status and running history or current rate. The roles of
individual differences in momentary states generated by deprivation
vs neuroregulatory processes for which those states are a proxy
remain to be determined.

Meanwhile, we tentatively suggest a proximate mechanism for the
inverse relationship between DIH and modulation of MPD response
by food deprivation in Harlan SD and LoS rats. It is based on evidence
that deprivation reduces extracellular dopamine in reward pathways
and facilitates dopamine release in response to salient incentives
(Carr, 2007). Key variance may be in the degree to which deprivation
reduces extracellular dopamine. The resulting reward deficit could be
redressed by running, with rats with a larger deficit running more.
MPD, however, synergistically increases dopamine availability by
blocking reuptake and enhancing running-induced dopamine release.
At some point, the rewardingness of increased dopamine transmis-
sion diminishes, and aversive effects recruit (Guzman and Ettenberg,
2007). Rats can titrate dopamine transmission around some optimal
level by running more or less, depending on MPD treatment.
Consistent with this reward-titration idea, Belke and colleagues
reported rate-dependent effects of stimulants on lever pressing
reinforced by the opportunity to run in food-deprived rats. Amphet-
amine or cocaine increased lever pressing during low-rate periods and
decreased lever pressing during high-rate periods (Belke and Dunbar,
2001; Belke et al., 2005). If running is itself an operant response on
which dopamine-mediated reward is based, the rate dependency in
Harlan SD and LoS animals follows. Our focus on reward rather than
nonspecific locomotor activation is supported by Larson and Carroll's
(2005) observation among food-deprived rats that high wheel-
runners self-administer more cocaine than low wheel-runners, with
no difference on cocaine-induced ambulation in a maze. Moreover,
more anxiety predicts greater sensitivity to cocaine's aversive effects
(Bush and Vaccarino, 2007), consistent with suppressed running after
MPD among LoS rats expressing high DIH. This explanation can be
tested in future research using behavioral and pharmacological tools
that allow the rewarding, aversive, and locomotor-activating effects of
MPD to be dissociated.

On a practical note, these results should be useful to investigators
who want to control for or study rate dependency. Post-experimental
tests of saccharin intake or deprivation sensitivity could be added to
current protocols. Such added-on tests can increase statistical
sensitivity to experimental manipulations and yield substantive
information about individual differences for relatively little additional
time or expense, without interfering with results of primary interest.

5.2. Saccharin phenotype as a marker for MPD's effects on acoustic startle

Food deprivation enhances MPD's facilitation of acoustic startle
amplitude and disruption of PPI more among LoS rats than HiS rats.
This line difference also was expressed in wheel running during the
same post-injection interval. Observing this line difference in both
running and startle adds to the list of measures by which LoS rats
exhibit heightened responsiveness to metabolic threats (Dess et al.,
2007). Differential responsiveness to MPD treatment in such distinct
contexts and response systems implicates more than reinforcement in
the line differences. It points to one or more pathways by which the
salience, or behavioral imperative, of diverse stimuli and situations is
gauged. Good candidates are pathways involving the nucleus
accumbens core (Cadoni et al., 2003; Swerdlow et al., 2007), anterior
insula (Paulus and Stein, 2006; Plailly et al., 2007) and ventral
tegmental area (Gifkins et al., 2002).

Neurochemical substrates of line differences may include a
ubiquitous mechanism key to signaling and regulating cellular energy
status, such as adenosine (Minor and Hunter, 2002). With respect to
dopaminergic mechanisms, research from other laboratories provides
guidance. At an interstimulus interval comparable to the one used in
the present study, Sprague–Dawley rats show more PPI disruption
than Long–Evans or Brown Norway rats, and D2 activation has been
implicated in the strain difference (Swerdlow et al., 2008; Weber et
al., 2008). Also, D1 rather than D2 activation appears to account for a
difference in PPI disruptability between Sprague–Dawley rats from
different suppliers (Harlan Inc. N Bantan Kingman Inc.; Swerdlow et
al., 2000a, 2000b). Given the Sprague–Dawley derivation of the LoS
and HiS lines and the use of Harlan SD rats for outbreeding in our
colony (Carroll et al., 2008), it seems likely that Harlan SD rats would
show PPI disruption by MPD in this startle preparation. More
intriguing conjectures are that D1 receptors would mediate any
differences among the substrains in PPI disruptability and, whether
through the same or another mechanism, that DIH would predict the
modulation of PPI disruption by food deprivation in Harlan SD and LoS
rats — but not HiS rats.

Positive PPI scores indicate enhancement of startle by the prepulse
stimulus (prepulse facilitation), a phenomenon usually observed only
at a shorter or longer interstimulus interval than the interval used
here (100 ms; Mansbach and Geyer, 1991; Reijmers and Peeters,
1994). Ketamine creates exceptions, causing prepulse facilitation at
intermediate interstimulus intervals (De Bruin et al., 1999; Imre et al.,
2006). The group mean for deprived LoS rats given MPD was positive
even before covariate adjustment, consistent with prepulse facilita-
tion. However, most of the rats startled less on prepulse trials than on
regular trials. These results underscore the challenge of quantifying
and interpreting prepulse inhibition. Whether PPI disruption by MPD
in deprived LoS rats reflects impaired sensorimotor gating and/or a
separate facilitatory process (De Bruin et al., 1999; Imre et al., 2006;
Qu et al., 2009; Yee et al., 2004) remains to be determined.

In striking contrast to results for LoS rats, PPI disruption by MPD
was eliminated by deprivation among HiS rats. This finding is
intriguing in light of HiS rats' greater impulsivity (vs LoS rats; Anker
et al., 2008; Perry et al., 2007). HiS rats showed robust PPI after saline
injection in both feeding conditions (see also Dess et al., 2005), so at
least by this measure, they do not comprise an inattention model.
However, the resistance to MPD's disruptive effect conferred by
deprivation only in HiS rats may be relevant to the study of
mechanisms by which MPD can improve or impair cognitive function
(Blondeau and Dellu-Hagedorn, 2007; Hawk et al., 2003).

These findings complement previous documentation of rat strain
and supplier differences in PPI disruption by stimulant drugs
(Swerdlow et al., 2007, 2008; Weber et al., 2008) and extend that
literature to include modulation by feeding status and prediction of
effects by a phenotype linked to cocaine and ethanol self-adminis-
tration, preference for ethanol-paired flavors, and ethanol withdrawal
severity (Carroll et al., 2008; Dess et al., 2005). These data should be
useful to others using startle as an investigative tool, particularly
with respect to selection of strain and supplier and feeding status
during drug administration. The LoS and HiS lines have been
cryopreserved at the federally funded Rat Research & Resource Center
(Columbia, MO), making them an option for further study by other
investigators.
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5.3. Parametric considerations

Deprivation and drug parameterswere held constant in this study in
interests of keeping its complexitymanageable. Metabolic status and its
correlates (e.g. adiposity, circadian activity patterns) are sensitive to the
pattern, chronicity, and severity of restricted access to food. However,
some effects of food deprivation recruit quickly, persist, and are robust
across diverse deprivation protocols (e.g. Davidson et al., 1992;
Marinkovic et al., 2007), so how sensitive the effects reported here
would be to parametric variation of food access is an open question.

Average MPD effects in all three strains of rats comported to well
known stimulant effects, providing a foundation from which to ask
whether the novel findings generalize to other doses or drugs. Strain
differences sometimes hold across stimulant doses (e.g. Swerdlow
et al., 2001) and sometimes they do not (Bell et al., 2003). Similarly,
some traits expressed in response to one stimulant are expressed
differently, or not at all, to another (e.g. Cain et al., 2009 vs Wooters
et al., 2006; Rhodes and Garland, 2003; also see Arnold, 2000). Direct
comparison of MPD at several doses to other stimulants would be
informative.

5.4. Broader implications

These results invite inquiry into how taste phenotypes and/or food
deprivation sensitivity may relate to MPD's therapeutic and side
effects. Stimulants are the drug treatment of choice for Attention
Deficit Hyperactivity Disorder (ADHD; Kollins, 2008). Variability
among individuals is a continuing challenge in pharmacotherapy
(Stein andMcGough, 2008), and taste shows promise as a noninvasive
peripheral marker for central adenosine and monoamine function
(DeMet et al., 1989; Heath et al., 2006). Anxiety, commonly comorbid
with ADHD (Jarrett and Ollendick, 2008; Ollendick et al., 2008),
predicts response to MPD on some measures (Bedard and Tannock,
2008;Goez et al., 2007; Tannock et al., 1995;Urman et al., 1995).While
MPD treatment is not generally contraindicated by anxiety (Garcia
et al., 2009; Ollendick et al., 2008), identifying the anxious individuals
who are most likely to benefit from MPD treatment or to suffer fewer
adverse effects would be helpful.

Chronically or phasically reduced food intake frequently accom-
panies ADHD, either due to a comorbid eating disorder (Biederman
et al., 2007; Quinn, 2008) or as a side effect of MPD treatment
(Graham and Coghill, 2008). Children with the 9-repeat dopamine
transporter (DAT1) allele experience more appetite suppression and
lower overall efficacy during MPD treatment than do other children
(Davis et al. 2007; Stein et al. 2005). Like experimental restriction of
feeding, leptin-induced weight loss enhances stimulant effects,
raising the possibility that endogenous anorexia and weight loss can
affect MPD responses (Carr, 2007). Thus, experimental food depriva-
tion, including acute deprivation, has potential as ameans of assessing
whether anorexia's behavior-activating effects moderate MPD
efficacy.
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